翻訳と辞書
Words near each other
・ Simply RISC
・ Simply Safety
・ Simply Sapney
・ Simply Saucer
・ Simply Shady
・ Simply Shekhar
・ Simply Slang
・ Simply Smiffy
・ Simplicial homology
・ Simplicial homotopy
・ Simplicial Lie algebra
・ Simplicial localization
・ Simplicial manifold
・ Simplicial map
・ Simplicial polytope
Simplicial presheaf
・ Simplicial set
・ Simplicial space
・ Simplicial sphere
・ Simplicially enriched category
・ Simplician
・ Simplicidentata
・ Simplicien Lucas
・ Simplicimonas similis
・ Simplicio de Castro
・ Simplicissimus
・ Simplicity
・ Simplicity (disambiguation)
・ Simplicity (Joe Pass album)
・ Simplicity (photography)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Simplicial presheaf : ウィキペディア英語版
Simplicial presheaf
In mathematics, more specifically in homotopy theory, a simplicial presheaf is a presheaf on a site (e.g., the category of topological spaces) taking values in simplicial sets (i.e., a contravariant functor from the site to the category of simplicial sets). Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s.〔http://ncatlab.org/nlab/files/ToenStacksNAC.pdf〕 Similarly, a simplicial sheaf on a site is a simplicial object in the category of sheaves on the site.
Example: Let us consider, say, the étale site of a scheme ''S''. Each ''U'' in the site represents the presheaf \operatorname(-, U). Thus, a simplicial scheme, a simplicial object in the site, represents a simplicial presheaf (in fact, often a simplicial sheaf).
Example: Let ''G'' be a presheaf of groupoids. Then taking nerves section-wise, one obtains a simplicial presheaf BG. For example, one might set B\operatorname = \varinjlim B\operatorname. These types of examples appear in K-theory.
If f: X \to Y is a local weak equivalence of simplicial presheaves, then the induced map \mathbb f: \mathbb X \to \mathbb Y is also a local weak equivalence.
== Homotopy sheaves of a simplicial presheaf ==
Let ''F'' be a simplicial presheaf on a site. The homotopy sheaves \pi_
* F of ''F'' is defined as follows. For any f:X \to Y in the site and a 0-simplex ''s'' in ''F''(''X''), set (\pi_0^\text F)(X) = \pi_0 (F(X)) and (\pi_i^\text (F, s))(f) = \pi_i (F(Y), f^
*(s)). We then set \pi_i F to be the sheaf associated with the pre-sheaf \pi_i^\text F.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Simplicial presheaf」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.